Characterization of the barrier parameter of homogeneous convex cones
نویسندگان
چکیده
We characterize the barrier parameter of the optimal self{concordant barriers for homogeneous cones. In particular, we prove that for homogeneous convex cones this parameter is the same as the rank of the corresponding Siegel domain. We also provide lower bounds on the barrier parameter in terms of the Carath eodory number of the cone. The bounds are tight for homogeneous self-dual cones.
منابع مشابه
Einstein-Hessian barriers on convex cones
On the interior of a regular convex cone K ⊂ R there exist two canonical Hessian metrics, the one generated by the logarithm of the characteristic function, and the Cheng-Yau metric. The former is associated with a self-concordant logarithmically homogeneous barrier on K with parameter of order O(n), the universal barrier. This barrier is invariant with respect to the unimodular automorphism su...
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملOn the optimal parameter of a self-concordant barrier over a symmetric cone
The properties of the barrier F (x) = −log(det(x)), defined over the cone of squares of a Euclidean Jordan algebra, are analyzed using pure algebraic techniques. Furthermore, relating the Carathéodory number of a symmetric cone with the rank of an underlying Euclidean Jordan algebra, conclusions about the optimal parameter of F are suitably obtained. Namely, in a more direct and suitable way th...
متن کاملA lower bound on the barrier parameter of barriers for convex cones
Let K ⊂ R be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x∗ ∈ K be a point in the relative interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x ∗, let yk be the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 81 شماره
صفحات -
تاریخ انتشار 1998